
Transitionless quantum driving

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 365303

(http://iopscience.iop.org/1751-8121/42/36/365303)

Download details:

IP Address: 171.66.16.155

The article was downloaded on 03/06/2010 at 08:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/36
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 365303 (9pp) doi:10.1088/1751-8113/42/36/365303

Transitionless quantum driving

M V Berry

H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 17 July 2009, in final form 30 July 2009
Published 20 August 2009
Online at stacks.iop.org/JPhysA/42/365303

Abstract

For a general quantum system driven by a slowly time-dependent Hamiltonian,
transitions between instantaneous eigenstates are exponentially weak. But
a nearby Hamiltonian exists for which the transition amplitudes between
any eigenstates of the original Hamiltonian are exactly zero for all values
of slowness. The general theory is illustrated by spins driven by changing
magnetic fields, and implies that any spin expectation history, including those
where the spin never precesses, can be generated by infinitely many driving
fields, here displayed explicitly. Asymptotically, the absence of transitions is
explained by continuation to complex time, where the complex degeneracies
in the transitionless driving fields have a nongeneric structure for which there
is no Stokes phenomenon; this is analogous to the explanation of reflectionless
potentials.

PACS numbers: 03.65.Ca, 95.30.Ky

1. Introduction

A changing Hamiltonian Ĥ 0(t) typically induces transitions between quantum states that are
driven by it. If the change is slow, it is natural to refer these changes to the adiabatic basis, that
is, the basis of eigenstates of the instantaneous (‘frozen’) Ĥ 0(t). If the slow change is analytic
and described by a small parameter ε, the familiar adiabatic theorem [1] guarantees that if the
system starts in one of the instantaneous eigenstates, and if the state remains non-degenerate,
then it will follow this state closely. But although the transition amplitude is very small, it is
not zero: familiar asymptotic analysis [2–5] indicates that it is of order exp(-constant/ε). The
standard example is the exactly solvable Landau–Majorana–Zener (LMZ) Hamiltonian [6–8]
for two-state systems.

Nevertheless, in what can be regarded as a ‘reverse engineering’ perspective, it is easy
to find Hamiltonians Ĥ (t), associated with any chosen Ĥ 0(t), that drive the instantaneous
eigenstates of Ĥ 0(t) exactly: there are no transitions between them, even if ε is large. We give
a general formula for Ĥ (t) in section 2. An example is spins driven by changing magnetic
fields (section 3), for which the result implies the existence of classical spin vectors that do
not precess when driven by changing magnetic fields. For the special case of spin 1/2, which

1751-8113/09/365303+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://stacks.iop.org/JPhysA/42/365303


J. Phys. A: Math. Theor. 42 (2009) 365303 M V Berry

also represents general two-state quantum evolution, the LMZ Hamiltonian can be modified
to get a closely related transitionless version (section 4). The explanation of the fact that these
transition amplitudes are exactly zero, rather than exponentially small, is given in section 5. It
involves asymptotics related to the analytic continuation of the modified Ĥ (t), which differs
from that of Ĥ 0(t) in a crucial respect. The relation between this reverse engineering view
of quantum evolution and the usual direct approach is explained in the concluding section
(section 6).

For the special case of a two-state system, the reverse engineering problem has been
approached in a different way by Garanin and Schilling [9]: they keep the off-diagonal
elements of the 2 × 2 Hamiltonian matrix constant, and alter the time dependence of the
diagonal elements to generate any desired relation between the states at t = ±∞.

2. General transitionless tracking algorithm

Consider an arbitrary time-dependent Hamiltonian Ĥ 0(t), with instantaneous eigenstates and
energies given by

Ĥ 0(t)|n(t)〉 = En(t)|n(t)〉. (2.1)

In the adiabatic approximation, the states driven by Ĥ 0(t) would be

|ψn(t)〉 = exp

{
− i

h̄

∫ t

0
dt ′En(t

′) −
∫ t

0
dt ′〈n(t ′)|∂t ′n(t ′)〉

}
|n(t)〉. (2.2)

For convenience, this incorporates the effective vector potential 〈n(t)|∂tn(t)〉 that generates
the geometric phase [10, 11] in cases where the evolution is cyclic, that is |n(T )〉 = |n(0)〉 for
some T.

In the reverse engineering approach adopted here, we seek a Hamiltonian Ĥ (t) for which
these are the exact evolving states, satisfying

ih̄∂t |ψn(t)〉 = Ĥ (t)|ψn(t)〉. (2.3)

For this Hamiltonian, the states must follow |n(t)〉 exactly: there are no transitions between
the eigenstates of Ĥ 0(t), not only after infinite time but for all times.

To find Ĥ (t), we first note that any time-dependent unitary operator Û (t) is the solution
of

ih̄∂t Û (t) = Ĥ (t)Û (t), (2.4)

where

Ĥ (t) = ih̄(∂t Û (t))Û †(t). (2.5)

Then choosing

Û (t) =
∑

n

exp

{
− i

h̄

∫ t

0
dt ′En(t

′) −
∫ t

0
dt ′〈n(t ′)|∂t ′n(t ′)〉

}
|n(t)〉〈n(0)|, (2.6)

we find from (2.5) that the Hamiltonian driving the eigenstates |n(t)〉 according to (2.3) is

Ĥ (t) =
∑

n

|n〉En〈n| + ih̄
∑

n

(|∂tn〉〈n| − 〈n|∂tn〉|n〉〈n|) ≡ Ĥ 0(t) + H1(t) (2.7)

in which the explicit t-dependence of quantities has been omitted and all kets represent |n(t)〉
not |n(0)〉. This Hamiltonian has been obtained before [12, 13], as a tool in proofs of the
adiabatic theorem.
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To get a more convenient form, we eliminate the derivative |∂tn〉 by differentiating (2.1):

〈m|∂tn〉 = 〈m|∂t Ĥ 0|n〉
En − Em

. (2.8)

Now Ĥ 1(t) can be written as

Ĥ 1(t) = ih̄
∑
m�=n

∑ |m〉〈m|∂t Ĥ 0|n〉〈n|
En − Em

. (2.9)

This algorithm gives the Hamiltonian Ĥ (t) that drives the eigenstates |n(t)〉 of Ĥ 0(t) exactly,
that is without generating transitions between them. Note that this single Ĥ (t)works for all
the states |n(t)〉. In a sense, we can regard the set of states |n(t)〉 as ‘moving eigenstates’ of
Ĥ (t).

An unanticipated feature of the result (2.9) emerges in the adiabatic regime of small ε, in
which the original Hamiltonian varies slowly and so can be written as Ĥ 0(εt). It might seem
that the correction Ĥ 1(t), which eliminates the transitions of order exp(−1/ε) that would be
generated by Ĥ 0(t) alone, would itself be of order exp(−1/ε). But it is not: from (2.9), the
correction is of order ε.

Instead of specifying Ĥ 0(t), we could specify the complete orthonormal set of states
|n(t)〉. Then the freedom to choose En(t) shows that there are infinitely many Hamiltonians
that can generate the evolution |n(t)〉; they are distinguished by the choice of phases in (2.2).
The simplest choice is En(t) = 0, for which the bare states |n(t)〉, with no phase factors, are
driven by

Ĥ (t) = ih̄
∑

n

|∂tn(t)〉〈n(t)| (2.10)

reflecting the identity

|∂tn(t)〉 =
∑
m

|∂tm(t)〉〈m(t)|n(t)〉. (2.11)

As an immediate application, transitionless driving provides a mechanism for producing
the cyclic evolution postulated in the Aharonov–Anandan (AA) version of the geometric phase
[14]: simply choose a Hamiltonian satisfying Ĥ 0(T ) = Ĥ 0(0), and single-valued eigenstates
|n(T )〉 = |n(0)〉; then (2.7) will generate this cyclic evolution exactly, with the AA phase
given by the vector potential integral in (2.2).

3. Spins driven by magnetic fields

For a spin driven by a magnetic field B0(t), we choose

Ĥ 0(t) = γ B0(t) · Ŝ, (3.1)

where γ is the gyromagnetic ratio and Ŝ is the vector spin operator for a particle with arbitrary
spin quantum number s. For s = 1/2,

Ŝ = 1

2
h̄

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
, (3.2)

involving the Pauli matrices.
For general s, (2.9) is

Ĥ 1(t) = ih̄γ ∂tB0 ·
∑
m�=n

∑ |m〉〈m|Ŝ|n〉〈n|
En − Em

, (3.3)
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in which the states |n〉 are eigenstates of (3.1), with energies

En = γ h̄nB0(t), (3.4)

where B0(t) is the length |B0(t)|. To get an explicit form for Ĥ 1(t), we use manipulations
similar to those in the analogous calculation of geometric phases [10], and temporarily rotate
axes so that B0 is in the z-direction. Then the only nonzero matrix elements are

〈n|Ŝz|n〉 = h̄n,

〈n ± 1|Ŝx |n〉 = 1
2h̄

√
(s(s + 1) − n(n ± 1)),

〈n ± 1|Ŝy |n〉 = ∓ 1
2 ih̄

√
(s(s + 1) − n(n ± 1)).

(3.5)

Substituting in (3.3) we get, after some manipulation,

Ĥ 1 = 1

B0
(∂tB0xŜy − ∂tB0yŜx), (3.6)

and so, reverting to general axes

Ĥ 1 = 1

B2
0

∂tB0 × Ŝ · B0 = 1

B2
0

B0 × ∂tB0 · Ŝ (3.7)

Thus the Hamiltonian that drives the spin states of (3.1) transitionlessly is

Ĥ (t) =
[
γ B0(t) +

1

B0(t)2
B0(t) × ∂tB0(t)

]
· Ŝ

= [γ B0(t) + b0(t) × ∂tb0(t)] · Ŝ ≡ γ B(t) · Ŝ (3.8)

involving a modified magnetic field

B(t) = B0(t) +
1

γ
b0(t) × ∂tb0(t). (3.9)

Note that the modification is independent of γ and involves only the field direction

b0(t) = B0(t)

B0(t)
. (3.10)

The result (3.9) holds for any spin s. For the special case s = 1/2, (3.8) is a 2 × 2 matrix
Hamiltonian that generates transitionless evolution in any quantum two-state system.

The modified field (3.9) has a classical interpretation, in terms of the vector spin
expectation value

S(t) ≡ 〈ψn(t)|Ŝ|ψn(t)〉, (3.11)

in which |ψn(t)〉 is one of the states (2.2), satisfying (2.3) with the Hamiltonian (3.8). As is
well known, this satisfies the classical equation

∂tS(t) = γ B(t) × S(t). (3.12)

Since this preserves the length |S(t)|, it is convenient in the following to choose S(t) as a unit
vector.

For a general state and a general driving field B(t), that is, a field not generated by
the reverse engineering formula (3.9), the dynamical equation (3.12) would describe a spin
precessing round the instantaneous direction b(t) with angular velocity γ B(t). The adiabatic
approximation corresponds to large γ B(t), in which the precession is fast compared with
the variation of the direction b(t). If at some initial time we choose an extreme eigenstate,
corresponding to a quantum number n = ±s, the corresponding instantaneous spin vector
is directed along b(t) and does not precess. Nevertheless, changes of the direction b(t) will
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eventually cause S(t) to deviate from b(t) and then it will precess. Such weak precession is
the classical analogue of the weak quantum transitions induced by slowly changing fields.

But we are considering fields B(t) that are not arbitrary. The arbitrary field is B0(t), which
is related to B(t) by (3.9). Therefore for an extreme eigenstate the unit spin vector is given by

S(t) = ±b0(t), (3.13)

not only initially but forever: the modification (3.9) ensures that when driven by B(t) the
spin is perpetually precessionless. This can be stated in a different way: any choice of spin
evolution S(t), that is any time-dependent path on the unit spin sphere, can be generated with
(3.12) exactly by infinitely many driving fields, namely, from (3.9),

B(t) = B0(t)S(t) +
1

γ
S(t) × ∂tS(t), (3.14)

in which B0(t) can be any function of time. If B0(t) = 0, the evolution equation (3.12) reduces
to the identity

∂tS(t) = (S(t) × ∂tS(t)) × S(t). (3.15)

An elementary application of (3.14) is to reproduce fields that drive a spin uniformly rotating
on a cone with opening angle 2θ : the evolution

S(t) = sin θ(ex cos �t + ey sin �t) + cos θez (3.16)

can be generated by a driving field rotating on a different cone:

B(t) =
(

B0(t) − 1

γ
� cos θ

)
sin θ(ex cos �t + ey sin �t)

+

(
B0(t) cos θ +

1

γ
� sin2 θ

)
ez. (3.17)

The spin rotation should not be regarded as precession, because there need be no relation
between � and the instantaneous precession angular velocity γ B(t).

If B0(t) is constant, (3.17) represents a uniformly rotating field as employed in NMR [15],
but the same evolution is generated for any B0(t). Note that the freedom to choose B0(t) means
that there is no unique relation between the cone angles of B(t) and S(t); for a specified driving
cone, the spin cone angle depends on the initial condition.

4. Transitionless Landau–Majorana–Zener model

In the standard two-state LMZ model [6–8], the driving field varies along a straight line in B
space, with uniform speed V and closest approach Bmin to the origin B = 0. For transitionless
evolution (nonprecessing spin) we require B0(t) to have this behaviour, so we choose

B0(t) = Bminex + V tez. (4.1)

The unit spin vector evolves according to

S(t) = Bminex + V tez√
B2

min + V 2t2
, (4.2)

so its path on the spin (Bloch) sphere is a great circle, starting at the south pole {0, 0, −1} at
t = −∞ and ending at the north pole {0, 0, +1}at t = +∞.

According to (3.14), the field that would generate this evolution is

B(t) = Bminex + V tez − εBminV

B2
min + V 2t2

ey, (4.3)
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so the driving trajectory in B space is a plane curve that coincides with B0 at t = ±∞ but
includes an excursion out of the xz-plane near t = 0.

The standard LMZ evolution, in which B(t), rather than B0(t), is given by (4.1), is much
more complicated (see section 6). The solution to (2.3) for the quantum state (with s = 1/2),
or (3.12) for the classical spin vector, involves parabolic cylinder functions [14], leading to a
transition amplitude

exp

{
−πγB2

min

4V

}
. (4.4)

How can it be that the more complicated driving field (4.3) generates the much simpler spin
evolution (4.2), in which there are no transitions? This is the subject of the following section.

5. Adiabatic explanation of transitionlessness

A general theory for the development of exponentially weak transitions (i.e. spin precession),
in the adiabatic regime of large γ B0, has been developed in detail for the quantum s = 1/2
case and where the components of the driving field B(t) are analytic functions. This involves
continuation to pairs of complex-conjugate times tc, t∗c for which B(tc) = 0 [2, 5]. These are
branchpoints of

B(t) =
√

B2
x (t) + B2

y (t) + B2
z (t). (5.1)

At the complex instant tc, the complexified Hamiltonian in (3.8) is degenerate and the adiabatic
approximation breaks down. A Stokes line connects tc and t∗c and the time when this crosses
the real axis marks the appearance of the exponentially weak transition [5, 16].

The explanation of the failure of the standard argument when the driving field is given by
(3.9) lies in the radically different nature of the zero at tc, compared with that of the zeros tc0

of B0(t). Since the two terms in (3.9) are orthogonal, the zeros are given by

γ 2B6
0 (tc) + |B0(tc) × Ḃ0(tc)|2 = 0. (5.2)

The components of B0(t) are assumed to be smooth functions of t, so the second term on the
left-hand side will be finite. Thus, close to tc0,

B0(t) =
√

A(t − tc0) + B(t − tc0)2 + · · · ,
|B0(t) × Ḃ0(t)|2 = C + D(t − tc0) + · · · . (5.3)

For large γ there are three solutions to (4.2) close to tc0, namely

tcn = tc0 +
γ −2/3

A
(−C)1/3 exp

(
2

3
iπn

)
(n = 1, 2, 3). (5.4)

Thus the term modifying B0(t) in (3.8), ensuring the absence of transitions, splits each
branchpoint into three, separated by a distance of order γ −2/3. Precisely this situation occurs
in the analogous problem of reflectionless potentials [17] so it is not necessary to repeat the
argument in detail. The result is that local expansion of the associated second-order differential
equation near the cluster of zeros does not give an Airy function (involving Bessel function of
order ±1/3), whose Stokes phenomenon would generate the small exponential responsible for
adiabatic quantum transitions and spin precession. Rather, the local expansion gives a ‘fake
Airy function’: a Bessel function of order 1/2, whose asymptotic expansion terminates at the
first term so there is no Stokes phenomenon and therefore no small exponential.

There are connections between reflectionlessness, and therefore the special case of
transitionlessness in the two-state case, and Ermakov–Lewis invariants [18, 19], but I do
not pursue these here.
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6. Comparison of reverse and direct engineering

The reverse engineering approach answers the question: what Hamiltonian Ĥ (t) will generate
a given evolution, that is, evolving states that are instantaneous eigenstates of a given
Hamiltonian Ĥ 0(t)? In theoretical physics it is customary to pose the question in the opposite
way: we seek the evolution driven by a specified Hamiltonian Ĥ (t), which is equivalent to
finding Ĥ 0(t) by solving the time-dependent Schrödinger equation.

Determining Ĥ 0(t) is equivalent to inverting (2.7). One way to do this is by iteration (cf
(2.9)) of

Ĥ 0(t) = Ĥ (t) − ih̄
∑
m�=n

∑ |m〉〈m|∂t Ĥ 0|n〉〈n|
En − Em

. (6.1)

This generates a version of the familiar adiabatic series, with each iteration introducing a
higher derivative of Ĥ (t)—and similar to other schemes, for example iteration to give the
time-ordered evolution operator [20].

But the adiabatic iteration diverges, and it is instructive to illustrate the ‘reverse reverse
engineering’ with the exact solution of the LMZ example, in the classical formulation involving
the spin expectation S(t). To save writing, we choose Bmin = V = 2 in (4.1), so the evolution
equation is of the form (3.12) with

B(t) = 2{1, 0, t}. (6.2)

We can solve for the spin using the solution of the quantum equation

i∂t |ψ(t)〉 = γ

(
t 1
1 −t

)
|ψ(t)〉. (6.3)

An exact solution can be expressed in terms of parabolic cylinder functions D:

|ψ(t)〉 =
{
u(t)

v(t)

}
= exp

(
−πγ

8

) {
−i

(
1
2 iγ

)1/2
Diγ /2−1(t exp(3π i/4)

√
2γ )

Diγ /2(t exp(3π i/4)
√

2γ )

}
, (6.4)

and satisfies

|u(t)|2 + |v(t)|2 = 1. (6.5)

The corresponding evolving unit spin is given exactly by (3.11):

S(t) = {2 Re[u ∗ (t)v(t)], 2 Im[u ∗ (t)v(t)], |u(t)|2 − |v(t)|2}. (6.6)

From this exact solution we seek B0(t) in (3.14), from which

B0(t) = (B(t) · S(t))S(t) = 2(2 Re[u ∗ (t)v(t)] + t (|u(t)|2 − |v(t)|2))S(t). (6.7)

Figures 1(a) and (b) show the components of B0(t) for several values of γ . For small γ , the
curves are very different from those for B(t) (equation 6.2), but they approach B(t) for large γ .
When substituted into (3.14), B0(t) reproduces B(t) exactly, whatever the value of γ . In fact
the redundancy is much greater, because different solutions of (6.3) will give different spin
evolutions. The general time-dependent solution of (6.3) can be written in terms of (6.4) as
follows:

|ψ(t)〉 = cos
(

1
2θ

)
exp

(
1
2 iφ

) {
u(t)

v(t)

}
+ sin

(
1
2θ

)
exp

(− 1
2 iφ

) {−v ∗ (t)

u ∗ (t)

}
(6.8)

in which θ and φ are arbitrary. Each choice of θ and φ (and γ ) gives a different function
B0(t) (figures 1(b) and (c)), but all reproduce the same B(t) when substituted into (3.14). Note
that none of the fields B0(t) are asymptotic to B(t) for large |t|, reflecting the inevitabilty of
transitions between the adiabatic states.
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Figure 1. Magnetic field B0(t) (equation (6.7)) for Landau–Majorana–Zener Hamiltonian whose
eigenstates are exact time-dependent states for driving field B(t) = 2{1, 0, t}. Thick curve: length
B0(t) = B(t) · S(t); thin curve: B0x(t); dotted curve: B0y(t); dashed curve: B0z(t). The fields are
generated from the states (6.8) with (a) γ = 2.5, θ = 0; (b) γ = 1, θ = 0; (c) γ = 2, θ = 30◦, φ =
22.5◦; (d) γ = 0.59, θ = 30◦, φ = 22.5◦. Note that the oscillations in the components are much
stronger than the oscillations in the length B0(t).

Acknowledgments

I thank Dr J M Robbins for an important observation that led to a significant improvement in
the presentation, Professor S Teufel for providing important references, and Dr M R Dennis
and Professor P Shukla for helpful discussions. My research is supported by the Leverhulme
Trust.

References

[1] Born M and Fock V A 1928 Beweis des Adiabatensatzes Z. Phys. 51 165–9
[2] Dykhne A M 1962 Sov. Phys.—JETP 14 941–3
[3] Davis J P and Pechukas P 1976 Nonadiabatic transitions induced by a time-dependent Hamiltonian in the

semiclassical/adiabatic limit: the two-state case J. Chem. Phys. 64 3129–37
[4] Hwang J-T and Pechukas P 1977 The adiabatic theorem in the complex plane and the semiclassical calculation

of nonadiabatic transition amplitudes J. Chem. Phys. 67 4640–53
[5] Berry M V 1990 Histories of adiabatic quantum transitions Proc. R. Soc. Lond. A 429 61–72
[6] Landau L 1932 Zur Theorie der Energieubertragung II Phys. Sov. Union 2 46–51
[7] Majorana E 1932 Atomi orientation campo magnetico variable Nuovo Cimento 9 43–50
[8] Zener C 1932 Non-adiabatic crossing of energy levels Proc. R. Soc. Lond. A 137 696–702
[9] Garanin D A and Schilling R 2002 Inverse problem for the Landau–Zener effect Europhys. Lett. 59 7–13

[10] Berry M V 1984 Quantal phase factors accompanying adiabatic changes Proc. R. Soc. Lond. A 392 45–57
[11] Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific)

8

http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1063/1.432648
http://dx.doi.org/10.1063/1.434630
http://dx.doi.org/10.1098/rspa.1990.0051
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1209/epl/i2002-00152-9
http://dx.doi.org/10.1098/rspa.1984.0023


J. Phys. A: Math. Theor. 42 (2009) 365303 M V Berry

[12] Kato T 1950 On the adiabatic theorem of quantum mechanics J. Phys. Soc. Japan. 5 435–9
[13] Nenciu G 1980 On the adiabatic theorem of quantum mechanics J. Phys. A: Math. Gen. 13 L15–L18
[14] Aharonov Y and Anandan J 1987 Phase change during a cyclic quantum evolution Phys. Rev. Lett. 58 1593–6
[15] Sakellariou D, Meriles C A, Martin R W and Pines A 2005 NMR in rotating magnetic fields: magic-angle field

spinning Mag. Res. Imag. 23 295–9
[16] Lim R and Berry M V 1991 Superadiabatic tracking for quantum evolution J. Phys. A: Math. Gen. 24 3255–64
[17] Berry M V and Howls C J 1990 Fake Airy functions and the asymptotics of reflectionlessness J. Phys. A: Math.

Gen. 23 L243–6
[18] Gjaja I and Bhattacharjee A 1992 Asymptotics of reflectionless potentials Phys. Rev. Lett. 68 2413–6
[19] Goodall R and Leach P G L 2005 Generalized symmetries and the Ermakov-Lewis invariant J. Nonlinear Math.

Phys. 12 15–26
[20] Berry M V 1987 Quantum phase corrections from adiabatic iteration Proc. R. Soc. Lond. A 414 31–46

9

http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1088/0305-4470/13/2/002
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1016/j.mri.2004.11.067
http://dx.doi.org/10.1088/0305-4470/24/14/014
http://dx.doi.org/10.1088/0305-4470/23/6/002
http://dx.doi.org/10.1103/PhysRevLett.68.2413
http://dx.doi.org/10.2991/jnmp.2005.12.1.3
http://dx.doi.org/10.1098/rspa.1987.0131

	1. Introduction
	2. General transitionless tracking algorithm
	3. Spins driven by magnetic fields
	4. Transitionless Landau--Majorana--Zener model
	5. Adiabatic explanation of transitionlessness
	6. Comparison of reverse and direct engineering
	Acknowledgments
	References

